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I. Our First Independent Set Algorithm:

mis1
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Independent Set

Definition (Independent Set)

Let G = (V ,E ) be a graph. A subset I ⊆ V of vertices of G is an
independent set of G if no two vertices in I are adjacent.

Definition (Maximum Independent Set (MIS))

Given a graph G = (V ,E ), compute the maximum cardinality of
an independent set of G , denoted by α(G ).

[or a maximum independent set of G ]
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Standard Branching Rule

I For every vertex v : ”there is a maximum independent set
containing v , or there is a maximum independent set not
containing v”

I Branching into two smaller subproblems: ”select v” and
”discard v” to be solved recursively

I ”discard v”: remove v

I ”select v”: remove N[v ]

I branching rule:

α(G ) = max(1 + α(G − N[v ]), α(G − v)).
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Algorithm mis1

int mis1(G = (V ,E ));

{

if (∆(G ) ≥ 3) choose any vertex v of degree d(v) ≥ 3

return max(1 + mis1(G − N[v ]),mis1(G − v));

if (∆(G ) ≤ 2) compute α(G ) in polynomial time

and return the value;

}
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Intro Branch & Recharge Lower bounds Sort & Search

The branching rule

The branching rule is really simple. Given a vertex v on which we
want to branch :
! “select v” and recursively build all (σ, ")-DS containing v
! “discard v” and recursively build all (σ, ")-DS not containing v

v

v ′

select v

v ′

discard v

(σ, ")-DS
containing v

(σ, ")-DS
not containing v
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Correctness

I standard branching rule correct; hence branching does not
miss any maximum independent set

I graphs of maximum degree two are disjoint union of paths
and cycles

I α(G ) easy to compute if ∆(G ) ≤ 2 [exercice]

I mis1 outputs α(G ) for input graph G

I mis1 can be modified s.t. it outputs a maximum independent
set
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Time Analysis via recurrence

I Running time of mis1 is O∗(T (n)), where

I T (n) is largest number of base cases for any input graph G on
n vertices

I Base case = graph of maximum degree two for which α is
computed by a polynomial time algorithm

I branching rule implies recurrence:

T (n) ≤ T (n − 1) + T (n − d(v)− 1) ≤ T (n − 1) + T (n − 4)
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Solving the Recurrence

I Solutions of recurrence of form cn

I Basic solutions root of characteristic polynomial

xn = xn−1 + xn−4

I largest root of characteristic polynomial is its unique positive
real root

I Maple, Mathematica, Matlab etc.
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Running Time of mis1

Theorem: Algorithm mis1 has running time O∗(1.3803n).

Question: Is this the worst-case running time of mis1? [Exercice]
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II. Fundamental Notions and Time Analysis
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Branching Algorithms

are also called

I branch & bound algorithms

I backtracking algorithms

I search tree algorithms

I branch & reduce algorithms

I splitting algorithms

The technique is also called ”Pruning the search tree”

(e.g. in Woeginger’s well-known survey).
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Branching and Reduction Rules

Branching algorithms are recursively applied to instances of a
problem using branching rules and reduction rules.

I Branching rules: solve a problem instance by recursively
solving smaller instances

I Reduction rules:

- simplify the instance
- (typically) reduce the size of the instance
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Search Trees

I Search Tree:

used to illustrate, understand and analyse an execution of a
branching algorithm

I root: assign the input to the root

I node: assign to each node a solved problem instance

I child: each instance reached by a branching rule is assigned to
a child of the node of the original instance of the problem
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A search tree

Select Discard
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Analysing a Branching Algorithm

I Correctness:

Correctness of reduction and branching rules

I Running Time:

Upper Bound the (maximum) number of leaves in any search
tree of an input of size n:

1. Define a size of a problem instance.

2. Lower bound the progress made by the algorithm at each
branching step.

3. Compute the collection of recurrences for all branching rules.

4. Solve all those recurrences (to obtain a running time of the
form O∗(cn

i ) for each).

5. Take the worst case over all solutions: O∗(cn) with c = max ci
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Simple Time Analysis : Search Tree

I Assumption: for any node of search tree polynomial running
time.

I Time analysis of branching algorithms means to upper bound
the number of nodes of any search tree of an input of size n.

I Let T (n) be (an upper bound of) the maximum number of
leaves of any search tree of an input of size n.

I Running time of corresponding branching algorithm:
O∗(T (n))

I Branching rules to be analysed separately
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Simple Time Analysis : Branching Vectors

I Application of branching rule b to any instance of size n

I Problem branches into r ≥ 2 subproblems of size at most
n − t1, n − t2, . . . , n − tr for all instances of size n

I ~b = (t1, t2, . . . tr ) branching vector of branching rule b.
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Simple Time Analysis: Recurrences

I Linear recurrence for the maximum number of leaves of a
search tree corresponding to ~b = (t1, t2, . . . tr ):

T (n) ≤ T (n − t1) + T (n − t2) + · · ·+ T (n − tr ).

I Largest solution of any such linear recurrence (obtained by a
branching vector) is of form cn where c is the unique positive
real root of the characteristic polynomial:

xn − xn−t1 − xn−t2 − · · · − xn−tr = 0.

I This root c > 1 is called branching factor of ~b:

τ(t1, t2, . . . , tr ) = c
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Properties of Branching Vectors [Kullmann]

Let r ≥ 2. Let ti > 0 for all i ∈ {1, 2, . . . r}.

1. τ(t1, t2, . . . , tr ) ∈ (1,∞).

2. τ(t1, t2, . . . , tr ) = τ(tπ(1), tπ(2), . . . , tπ(r))

for any permutation π.

3. τ(t1, t2, . . . , tr ) < τ(t ′1, t2, . . . , tr )

if t1 > t ′1.
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Balancing Branching Vectors

Let i , j , k be positive reals.

1. τ(k, k) ≤ τ(i , j) for all branching vectors (i , j) satisfying
i + j = 2k.

2. τ(i , j) > τ(i + ε, j − ε) for all 0 < i < j and ε ∈ (0, j−i
2 ).

Example :

I τ(3, 3) = 3
√

2 = 1.2600

I τ(2, 4) = τ(4, 2) = 1.2721

I τ(1, 5) = τ(5, 1) = 1.3248
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Some Factors of Branching Vectors

Compute a table with τ(i , j) for all i , j ∈ {1, 2, 3, 4, 5, 6}:

T (n) ≤ T (n − i) + T (n − j) ⇒ xn = xn−i + xn−j

x j − x j−i − 1 = 0

1 2 3 4 5 6

1 2.0000 1.6181 1.4656 1.3803 1.3248 1.2852

2 1.6181 1.4143 1.3248 1.2721 1.2366 1.2107

3 1.4656 1.3248 1.2560 1.2208 1.1939 1.1740

4 1.3803 1.2721 1.2208 1.1893 1.1674 1.1510

5 1.3248 1.2366 1.1939 1.1674 1.1487 1.1348

6 1.2852 1.2107 1.1740 1.1510 1.1348 1.1225
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Addition of Branching Vectors

I ”Sum up” consecutive branchings

I ”sum” (overall branching vector) easy to find via search tree

I useful technique to deal with tight branching vector (i , j)

Example

I whenever algorithm (i , j)-branches it immediately
(k, l)-branches on first subproblem

I overall branching vector (i + k, i + l , j)
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Addition of Branching Vectors: Example
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III. Preface
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Branching algorithms

I one of the major techniques to construct FPT and ModEx
Algorithms

I need only polynomial space

I major progress due to new methods of running time analysis

I many best known ModEx algorithms are branching algorithms

Challenging Open Problem

How to determine worst case running time of branching
algorithms?
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History: Before the year 2000

I Davis, Putnam (1960): SAT

I Davis, Logemann, Loveland (1962): SAT

I Tarjan, Trojanowski (1977): Independent Set

I Robson (1986): Independent Set

I Monien, Speckenmeyer (1985): 3-SAT
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History: After the Year 2000

I Beigel, Eppstein (2005): 3-Coloring

I Fomin, Grandoni, Kratsch (2005): Dominating Set

I Fomin, Grandoni, Kratsch (2006): Independent Set

I Razgon; Fomin, Gaspers, Pyatkin (2006): FVS
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IV. Our Second Independent Set Algorithm:

mis2
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Branching Rule

I For every vertex v :

I ”either there is a maximum independent set containing v ,

I or there is a maximum independent set containing a neighbour
of v”.

I Branching into d(v) + 1 smaller subproblems: ”select v” and
”select y” for every y ∈ N(v)

I Branching rule:

α(G ) = max{1 + α(G − N[u]) : u ∈ N[v ]}
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Algorithm mis2

int mis2(G = (V ,E ));

{

if (|V | = 0) return 0;

choose a vertex v of minimum degree in G

return 1 + max{ mis2(G − N[y ]) : y ∈ N[v ]};

}
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Analysis of the Running Time

I Input Size number n of vertices of input graph

I Recurrence:

T (n) ≤ (d + 1) · T (n − d − 1),

where d is the degree of the chosen vertex v .

I Solution of recurrence:

O∗((d + 1)n/(d+1))

(maximum d = 2)

I Running time of mis2: O∗(3n/3).
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Enumerating all maximal independent sets I

Theorem :
Algorithm mis2 enumerates all maximal independent sets of the
input graph G in time O∗(3n/3).

I to any leaf of the search tree a maximal independent set of G
is assigned

I each maximal independent set corresponds to a leaf of the
search tree

Corollary :

A graph on n vertices has O∗(3n/3) maximal independent sets.
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Enumerating all maximal independent sets II

Moon Moser 1962
The largest number of maximal independent sets in a graph on n
vertices is 3n/3.

Papadimitriou Yannakakis 1984

There is a listing algorithm for the maximal independent sets of a
graph having polynomial delay.
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V. Our Third Independent Set Algorithm:

mis3
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Contents

I History of branching algorithms to compute a maximum
independent set

I Branching and reduction rules for Independent Set algorithms

I Algorithm mis3

I Running time analysis of algorithm mis3
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History

Branching Algorithms for Maximum Independent Set

I O(1.2600n) Tarjan, Trojanowski (1977)

I O(1.2346n) Jian (1986)

I O(1.2278n) Robson (1986)

I O(1.2202n) Fomin, Grandoni, Kratsch (2006)
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Domination Rule

Reduction rule: ”If N[v ] ⊆ N[w ] then remove w .”

If v and w are adjacent vertices of a graph G = (V ,E ) such that
N[v ] ⊆ N[w ], then

α(G ) = α(G − w).

Proof by exchange:

If I is a maximum independent set of G such that w ∈ I then
I − w + v is a maximum independent set of G .
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Standard branching: ”select v” and ”discard v”

α(G ) = max(1 + α(G − N[v ]), α(G − v)).

To be refined soon.
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”Discard v” implies ”Select two neighbours of v”

Lemma:

Let v be a vertex of the graph G = (V ,E ). If no maximum
independent set of G contains v then every maximum independent
set of G contains at least two vertices of N(v).

Proof by exchange: Assume no maximum independent set
containing v .

I If I is a mis containing no vertex of N[v ] then I + v is a mis,
contraction.

I If I is a mis such that v /∈ I and I ∩ N(v) = {w}, then
I − w + v is a mis of G , contradiction.
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Mirrors

Let N2(v) be the set of vertices in distance 2 to v in G . A vertex
u ∈ N2(v) is a mirror of v if N(v) \ N(u) is a clique.

Lemma 3 (folding) Consider a graph G, and let G̃(v) be the graph obtained by folding a
foldable vertex v. Then

α(G) = 1 + α(G̃(v)).

Proof. Let S be a maximum independent set of G. If v ∈ S, then S \{v} is an independent
set of G̃(v). Otherwise, S contains at least one vertex of N(v) (since it is of maximum
cardinality). If N(v)∩S = {u}, then S\{u} is an independent set of G̃(v). Otherwise, it must
be N(v) ∩ S = {ui, uj}, for two non-adjacent vertices ui and uj (since N(v) does not contain
any anti-triangle by assumption). In this case S∪{uij}\{ui, uj} is an independent set of G̃(v).
It follows that α(G) ≤ 1 + α(G̃(v)). A similar argument shows that α(G) ≥ 1 + α(G̃(v)). !

We eventually introduce the following useful notion of mirror. Given a vertex v, a mirror
of v is a vertex u ∈ N 2(v) such that N(v) \N(u) is a (possibly empty) clique. We denote by
M(v) the set of mirrors of v. Examples of mirrors are given in Figure 4. Intuitively, when

Figure 4 Example of mirrors: u is a mirror of v.

v

u

v

u

v

u

v

u

we discard a vertex v, we can discard its mirrors as well without modifying the maximum
independent set size. This intuition is formalized in the following lemma.

Lemma 4 (mirroring) For any graph G and for any vertex v of G,

α(G) = max{α(G − {v} − M(v)), 1 + α(G − N [v])}.

Proof. Vertex v can either belong to a maximum independent set or not, from which we
obtain the trivial equation

α(G) = max{α(G − {v}), 1 + α(G − N [v])}.

Thus it is sufficient to show that, if v is not contained in any maximum independent set,
the same holds for its mirrors M(v). Following the proof of Lemma 2, if no maximum
independent set contains v, every maximum independent set contains at least two vertices
in N(v). Consider a mirror u ∈ M(v). Since every independent set contains at most one
vertex in N(v) \ N(u) (which is a clique by assumption), it must contain at least one vertex
in N(v)∩N(u) ⊆ N(u). It follows that u is not contained in any maximum independent set.

!

4.2 The Algorithm

Our algorithm mis is described in Figure 5. In the base case |V (G)| ≤ 1, the algorithm
returns the optimum solution mis(G) = |V (G)| (line 1). Otherwise, mis tries to reduce the
size of the problem by applying Lemma 2 and Lemma 3. Specifically, if G contains a proper
connected component C (line 2), the algorithm recursively solves the subproblems induced
by C and G − C separately, and sums the solutions obtained

mis(G) = mis(C) + mis(G − C).

17
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Mirror Branching

Mirror Branching: Refined Standard Branching

If v is a vertex of the graph G = (V ,E ) and M(v) the set of
mirrors of v then

α(G ) = max(1 + α(G − N[v ]), α(G − (M(v) + v)).

Proof by exchange: Assume no mis of G contains v

I By the lemma, every mis of G contains two vertices of N(v).

I If u is a mirror then N(v) \ N(u) is a clique; thus at least one
vertex of every mis belongs to N(u).

I Consequently, no mis contains u.
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Simplicial Rule

Reduction Rule: Simplicial Rule

Let G = (V ,E ) be a graph and v be a vertex of G such that N[v ]
is a clique. Then

α(G ) = 1 + α(G − N[v ]).

Proof:
Every mis contains v by the Lemma.
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Branching on Components

Component Branching

Let G = (V ,E ) be a disconnected graph and let C be a
component of G . Then

α(G ) = α(G − C ) + α(C ).

Well-known property of the independence number α(G ).
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Separator branching

S ⊆ V is a separator of G = (V ,E ) if G − S is disconnected.

Separator Branching: ”Branch on all independent sets of
separator S”.

If S is a separator of the graph G = (V ,E ) and I(S) the set of all
independent subsets I ⊆ S of G , then

α(G ) = max
A∈I(S)

|A| + α(G − (S ∪ N[A])).
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Using Separator Branching

I separator S small, and

I easy to find.

mis3 uses ”separator branching on S” only if

I S ⊆ N2(v), and

I |S | ≤ 2
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Algorithm mis3: Small Degree Vertices

I minimum degree of instance graph G at most 3

I v vertex of minimum degree

I if d(v) is equal to 0 or 1 then apply simplicial rule

(i) d(v) = 0: ”select v”; recursively call mis3(G − v)

(ii) d(v) = 1: ”select v”; recursively call mis3(G − N[v ])
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Algorithm mis3: Degree Two Vertices

I d(v) = 2: u1 and u2 neighbors of v

(i) u1u2 ∈ E : N[v ] clique; simplicial rule: select v .
call mis3(G − N[v ])

(ii) u1u2 /∈ E .

|N2(v)| = 1 : separator branching on
S = N2(v) = {w}
branching vector (|N2[v ] ∪ N[w ]|, |N2[v ]|), at
least (5, 4).

|N2(v)| ≥ 2 : mirror branching on v

branching vector (N2[v ],N[v ]), at least (5, 3).

Worst case for d(v) = 2:

τ(5, 3) = 1.1939
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Analysis for d(v) = 2

|N2(v)| = 1 : separator branching on S = N2(v) = {w}

Subproblem 1: ”select v and w” call mis3(G − (N[v ] ∪ N[w ]))
Subproblem 2: ”select u1 and u2”; call mis3(G − N2[v ])

Branching vector (|N[v ] ∪ N[w ]|, |N2[v ]|) ≥ (5, 4).

|N2(v)| ≥ 2 : mirror branching on v

”discard v”: select both neighbors of v , u1 and u2

”select” v”: call mis3(G − N[v ])

Branching vector (|N2[v ]|, |N[v ]|) ≥ (5, 3)

51/122



Algorithm mis3: Degree Three Vertices

d(v) = 3: u1, u2 and u3 neighbors of v in G .

Four cases: |E (N(v))| = 0, 1, 2, 3

Case (i): |E (N(v))| = 0, i.e. N(v) independent set.

every ui has a neighbor in N2(v); else domination rule applies

Subcase (a): number of mirrors 0 [other subcases: 1 or 2]

I each vertex of N2(v) has precisely one neighbor in N(v)

I minimum degree of G at least 3, hence every ui has at least
two neighbors in N2(v)
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d(v) = 3, N(v) independent set, v has no mirror

Algorithm branches into four subproblems:

I select v

I discard v , select u1, select u2

I discard v , select u1, discard u2, select u3

I discard v , discard u1, select u2, select u3

Branching vector (4, 7, 8, 8) and τ(4, 7, 8, 8) = 1.2406.

More subcases. More Cases. ...

Exercice:
Analyse the Subcases (b) and (c) of Case (i), and Case (ii).
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Algorithm mis3: Degree Three Vertices

Case (iii): |E (N(x))| = 2.
u1u2 and u2u3 edges of N(v).

Mirror branching on v :

”select v”: call mis3(G − N[v ])
”discard v”: discard v , select u1 and u3

Branching factor (4, 5) and τ(4, 5) = 1.1674

Case (iv): |E (N(x))| = 3.
simplicial rule: ”select v”

Worst case for d(v) = 3:

τ(4, 7, 8, 8) = 1.2406
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Algorithm mis3: Large Degree Vertices

Maximum Degree Rule [δ(G ) ≥ 4]

”Mirror Branching on a maximum degree vertex”

d(v) ≥ 6:

mirror branching on v

Branching vector (d(v) + 1, 1) ≥ (7, 1)

Worst case for d(v) ≥ 6:

τ(7, 1) = 1.2554
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Algorithm mis3: Regular Graphs

Mirror branching on r -regular graph instances:

Not taken into account !

For every r , on any path of the search tree from the root to a leaf
there is only one r -regular graph.

57/122



Algorithm mis3: Degree Five Vertices ∆ = 5 and δ = 4

Mirror branching on a vertex v with a neighbor w s.t. d(v) = 5
and d(w) = 4

Case (i): v has a mirror:

Branching vector (2, 6), τ(2, 6) = 1.2107.

Case (ii): v has no mirror:

immediately mirror branching on w in G − v

d(w) = 3 in G − v : Worst case branching factor for degree three:
(4, 7, 8, 8) Adding branching vector to (6, 1) sums up to
(5, 6, 8, 9, 9)

Worst case for d(v) = 5:

τ(5, 6, 8, 9, 9) = 1.2547
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Running time of Algorithm mis 3

Theorem :
Algorithm mis3 runs in time O∗(1.2554n).

Theorem :
The algorithm of Tarjan and Trojanowski has running time
O∗(2n/3) = O∗(1.2600n). [O∗(1.2561n)]
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VI. A DPLL Algorithm
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The Satisfiability Problem of Propositional Logic

Boolean variables, literals, clauses, CNF-formulas

I A CNF-formula, i.e. a boolean formula in conjunctive normal
form is a conjunction of clauses

F = (c1 ∧ c2 ∧ · · · ∧ cr ).

I A clause
c = (`1 ∨ `2 ∨ · · · ∨ `t)

is a disjunction of literals.

I A k-CNF formula is a CNF-formula in which each clause
consists of at most k literals.
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Satisfiability

truth assignment, satisfiable CNF-formulas

I A truth assignment assigns boolean values (false, true) to the
variables, and thus to the literals, of a formula.

I A CNF-formula F is satisfiable if there is a truth assignment
such that F evaluates to true.

I A CNF-formula is satisfiable if each clause contains at least
one true literal.
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The Problems SAT and k-SAT

Definition (Satisfiability (SAT))

Given a CNF-formula F , decide whether F is satisfiable.

Definition (k-Satisfiability (k-SAT))

Given a k-CNF F , decide whether F is satisfiable.

F = (x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ x3 ∨ ¬x4) ∧ (¬x2 ∨ ¬x3 ∨ x4)
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Reduction and Branching Rules of a Classical DPLL
algorithm

I Davis, Putnam 1960

I Davis, Logemann, Loveland (1962)

Reduction and Branching Rules

I [UnitPropagate] If all literals of a clause c except literal ` are
false (under some partial assignment), then ` must be set to
true.

I [PureLiteral] If a literal ` occurs pure in F , i.e. ` occurs in F
but its negation does not occur, then ` must be set to true.

I [Branching] For any variable xi , branch into ”xi true” and ”xi

false”.
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VII. The algorithm of Monien and

Speckenmeyer
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Assigning Truth Values via Branching

I Recursively compute partial assignment(s) of given k-CNF
formula F

I Given a partial truth assignment of F the corresponding
k-CNF formula F ′ is obtained by removing all clauses
containing a true literal, and by removing all false literals.

I Subproblem generated by the branching algorithm is a k-CNF
formula

I Size of a k-CNF formula is its number of variables
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The Branching Rule

Branching on a clause

I Branching on clause c = (`1 ∨ `2 ∨ · · · ∨ `t) of k-CNF formula
F

I into t subproblems by fixing some truth values:

I F1 : `1 = true
I F2 : `1 = false, `2 = true
I F3 : `1 = false, `2 = false, `3 = true

I Ft : `1 = false, `2 = false, · · · , `t−1 = false, `t = true

F is satisfiable iff at least one Fi , i = 1, 2, . . . , t is satisfiable.
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Time Analysis I

I Assuming F consists of n variables then Fi , i = 1, 2, . . . , t,
consists of n − i (non fixed) variables.

I Branching vector is (1, 2, . . . , t), where t = |c |.

I Solve linear recurrence
T (n) ≤ T (n − 1) + T (n − 2) + · · ·+ T (n − t).

I Compute the unique positive real root of

x t = x t−1 + x t−2 + x t−3 + · · ·+ 1 = 0

which is equivalent to

x t+1 − 2x t + 1 = 0.
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Time Analysis II

For a clause of size t, let βt be the branching factor.

Branching Factors: β2 = 1.6181, β3 = 1.8393, β4 = 1.9276,
β5 = 1.9660, etc.

There is a branching algorithm solving 3-SAT in time O∗(1.8393n).
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Speeding Up the Branching Algorithm

Observation: ”The smaller the clause the better the branching
factor.”

Key Idea: Branch on a clause c of minimum size. Make sure that
|c | ≤ k − 1.

Halting and Reduction Rules:

I If |c | = 0 return ”unsatisfiable”.

I If |c | = 1 reduce by setting the unique literal true.

I If F is empty then return ”satisfiable”.
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Monien Speckenmeyer 1985

For any k ≥ 3, there is an O∗(βk−1
n) algorithm to solve k-SAT.

3-SAT can be solved by an O∗(1.6181n) time branching algorithm.
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Autarky: Key Properties

Definition
A partial truth assignment t of a CNF formula F is called autark if
for every clause c of F for which the value of at least one literal is
set by t, there is a literal `i of c such that t(`i ) = true.

Let t be a partial assignment of F .

I t autark: Any clause c for which a literal is set by t is true.
Thus F is satisfiable iff F ′ is satisfiable, where F ′ is obtained
by removing all clauses c set true by t.

⇒ reduction rule

I t not autark: There is a clause c for which a literal is set by
t but c is not true under t. Thus in the CNF-formula
corresponding to t clause c has at most k − 1 literals.

⇒ branch always on a clause of at most k − 1 literals
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VIII. Lower Bounds
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Time Analysis of Branching Algorithms

Available Methods

I simple (or classical) time analysis

I Measure & Conquer, quasiconvex analysis, etc.

I based on recurrences

What can be achieved?

I establish upper bounds on the (worst-case) running time

I new methods achieve improved bounds for same algorithm

I no proof for tightness of bounds
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Limits of Current Time Analysis

We cannot determine the worst-case running time of branching
algorithms !

Consequences

I stated upper bounds of algorithms may (significantly)
overestimate running times

I How to compare branching algorithms if their worst-case
running time is unknown?

We strongly need better methods for Time Analysis !

Better Methods of Analysis lead to Better Algorithms
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Why study Lower Bounds of Worst-Case Running Time?

I Upper bounds on worst case running time of a Branching
algorithms seem to overestimate the running time.

I Lower bounds on worst case running time of a particular
branching algorithm can give an idea how far current analysis
of this algorithm is from being tight.

I Large gaps between lower and upper bounds for some
important branching algorithms.

I Study of lower bounds leads to new insights on particular
branching algorithm.
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Algorithm mis1 Revisited

int mis1(G = (V ,E ));

{

if (∆(G ) ≥ 3) choose any vertex v of degree d(v) ≥ 3

return max(1 + mis1(G − N[v ]),mis1(G − v));

if (∆(G ) ≤ 2) compute α(G ) in polynomial time

and return the value;

}
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Algorithm mis1a

int mis1(G = (V ,E ));

{

if (∆(G ) ≥ 3) choose a vertex v of maximum degree

return max(1 + mis1(G − N[v ]),mis1(G − v));

if (∆(G ) ≤ 2) compute α(G ) in polynomial time

and return the value;

}
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Algorithm mis1b

int mis1(G = (V ,E ));

{

if there is a vertex v with d(v) = 0 return 1 + mis1(G − v);

if there is a vertex v with d(v) = 1 return 1 + mis1(G − N[v ]);

if (∆(G ) ≥ 3) choose a vertex v of maximum degree

return max(1 + mis1(G − N[v ]),mis1(G − v));

if (∆(G ) ≤ 2) compute α(G ) in polynomial time

and return the value;

}
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Upper Bounds of Running time

Simple Running Time Analysis

I Branching vectors of standard branching: (1, d(v) + 1)

I Running time of algorithm mis1: O∗(1.3803n)

I Running time of modifications mis1a and mis1b:
O∗(1.3803n)

Does all three algorithms have same worst-case
running time ?
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Related Questions

I What is the worst-case running time of these three algorithms
on graphs of maximum degree three?

I How much can we improve the upper bounds of the running
times of those three algorithms by Measure & Conquer?

I (Again) what is the worst-case running time of algorithm
mis1?
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A lower bound for mis1

Lower bound graph

I Consider the graphs Gn = (Vn,E3)

I Vertex set: {1, 2, . . . , n}
I Edge set: {i , j} ∈ E3 ⇔ |i − j | ≤ 3
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Execution of mis1 on the graph Gn

Tie breaks!

I Branch on smallest vertex of instance

I Always a vertex of degree three

I Every instance of form Gn[{i , i + 1, . . . , n}]
I Branching on instance Gn[{i , i + 1, . . . , n}] calls mis1 on

Gn[{i + 1, i + 2, . . . , n}] and Gn[{i + 4, i + 5, . . . , n}]
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Recurrence for lower bound of worst-case running time:

T (n) = T (n − 1) + T (n − 4)

Theorem:
The worst-case running time of algorithm mis1 is Θ∗(cn), where
c = 1.3802... is the unique positive root of x4 − x3 − 1.

Exercice:
Determine lower bounds for the worst-case running time of mis1a
and mis1b.

85/122



Algorithm mis2 Revisited

int mis2(G = (V ,E ));

{

if (|V | = 0) return 0;

choose a vertex v of minimum degree in G

return 1 + max{ mis2(G − N[y ]) : y ∈ N[v ]};

}

Theorem:
The running time of algorithm mis2 is O∗(3n/3). Algorithm mis2
enumerates all maximal independent sets of the input graph.
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A lower bound for mis2

a1 b1

c1

a2 b2

c2

ak bk

ck

I Lower bound graph Gk : disjoint union of k triangles.

I Algorithm mis2 applied to Gk : chooses a vertex of any
triangle, branches into three subproblems Gk−1;
(by removing a triangle from Gk)

I Search tree has 3k = 3n/3 leaves;

Theorem:
The worst-case running time of algorithm mis2 is Θ∗(3n/3).

87/122



The Algorithm tt of Tarjan and Trojanowski

I Algorithm tt:
I Branching algorithm to compute a maximum independent set

of a graph
I published in 1977
I lengthy and tedious case analysis
I size of instance: number of vertices

I ”Simple running time analysis”: O∗(2n/3) = O∗(1.2600n)

I More precisely, author’s analysis establishes O∗(1.2561n).
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Important Properties of tt

Minimum Degree at most 4

If the minimum degree of the problem instance G is at most 4 then
algorithm tt runs through plenty of cases.

Minimum Degree at least 5

Either G is 5-regular or algorithm tt
“chooses ANY vertex w of degree at least 6 and branches to
G − N[w ] (select w) and G − w (discard w)”.

Lower bound graphs of minimum degree 6
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Lower Bound Graphs

I LB graphs: For all positive integers n,
Gn = ({1, 2, . . . , n},E6), where

{i , j} ∈ E6 ⇔ |i − j | ≤ 6.

I Tie break: For graphs of minimum degree 6, the algorithm
chooses smallest (resp. leftmost) vertex for branching.

I Branching “select[i]” removes i , i + 1, . . . i + 6;
“discard[i]” removes i ;
thus tt on Gn branches to Gn−7 and Gn−1.
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Branching

1 2 3 4 5 6 7 8 9 n

discard 1 select 1

2 3 4 5 6 7 8 9 n 8 9 n
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An Almost Tight Lower Bound

Definition
Let T (n) be the number of leaves in the search tree obtained when
executing algorithm tt on input graph Gn using the specified tie
break rules.

Recurrence

T (n) = T (n − 7) + T (n − 1)

Lower Bound of tt
The running time of algorithm tt is Ω∗(1.2555n).

REMINDER: Upper Bound O∗(1.2561n).
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Do we need lower bounds for other ModEx algorithms?

I Dynamic Programming

I Inclusion-Exclusion

I Treewidth Based

I Subset Convolution

93/122



Often claimed: ”Our algorithm is faster on practical instances than
its (worst case running) time we claim.”

For branching algorithms the situation seems to be even better:

I faster than claimed running time on all instances

I hard to construct instances that even need a close running
time

I ”much better on many instances”?
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IX. Memorization
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Memorization: To be Used on Branching Algorithms

I GOAL: Reduction of running time of branching algorithms

I Use of exponential space instead of polynomial space

I Introduced by Robson (1986): Memorization for a MIS
algorithm

I Theoretical Interest: allows to obtain branching algorithm of
best running time for various well-studied NP-hard problems

I Practical Importance doubtful: high memory requirements
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How does it work?

Basic Ideas

I Pruning the search tree: solve less subproblems

I Solutions of subproblems already solved to be stored in
exponential-size database

I Solve subproblem once; when to be solved again, look up the
solution in database

I query time in database logarithmic in number of stored
solutions

I cost of each look up is polynomial.

Memorization can be applied to many branching algorithms
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Once again Algorithm mis1

int mis1(G = (V ,E ));

{

if (∆(G ) ≥ 3) choose any vertex v of degree d(v) ≥ 3

return max(1 + mis1(G − N[v ]),mis1(G − v));

if (∆(G ) ≤ 2) compute α(G ) in polynomial time

and return the value;

}

Theorem:
Algorithm mis1 has running time O∗(1.3803n) and uses only
polynomial space.
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Reduction of the Running Time of mis1

The algorithm

I Having solved an instance G ′, an induced subgraph of input
graph G , store (G ′, α(G ′)) in a database.

I Before solving any instance, check whether its solution is
already available in database.

I Input graph G has at most 2n induced subgraphs.

I Database can be implemented such that each query takes
time logarithmic in its size, thus polynomial in n.
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Analysis of the Exponential Space algorithm

Upper bound of the running time of original polynomial space
branching algorithm is needed to analyse the exponential space
algorithm.

I Search tree of mis1(G ) on any graph of n vertices has T (n)
leaves: T (n) ≤ 1.3803n.

I Let Th(n), 0 ≤ h ≤ n, be the maximum number of
subproblems of size h solved when calling mis1(G ) for any
graph of n.

I Th(n) maximum number of nodes of the subtree
corresponding to an instance of h vertices.

I Similar to analysis of T (n), one obtains:

Th(n) ≤ 1.3803n−h
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Balance to analyse I

To analyse the running time a balancing argument depending on
the value of h is used.

How many instances of size h are solved?

I Th(n) ≤
(n
h

)
since G has at most

(n
h

)
induced subgraphs on h

vertices.

I Th(n) ≤ 1.3803n−h

Th(n) ≤ min(

(
n

h

)
, 1.3803n−h)
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Balance to analyse II

Balance both terms using Stirling’s approximation:

For each h, Th(n) ≤ 1.3803(1−α)n ≤ 1.3424n where α ≥ 0.0865
satisfies

1.38031−α =
1

αα(1− α)1−α

Theorem:
Memorization of algorithm mis1 establishes an algorithm running
in time O∗(1.3424n) needing exponential space.
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X. Branch & Recharge
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Another Way to Design and Analyse Branching Algorithms

I Using weights within the algorithm; not ”only” as a tool in
analysis

I GOAL: Easy time analysis

I In the best case: a few simple recurrences to solve

I Sophisticated correctness proof

I Time analysis (still) ”recurrence based”
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Framework: Initialisation

Initialisation

I First assign a weight of one to each vertex: w(v) = 1

I weight (resp. size) of input graph

w(G ) =
∑
v∈V

w(v) = |V | = n
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Framework: Branching

Branching: just one rule

I Fix one branching rule: ”select v” and ”discard v”

I Fix a branching vector (1, 1 + ε), ε > 0

I Make sure that for each branching

I ”discard v”: gain at least 1
I ”select v”: gain at least 1 + ε

I running time of algorithm: O∗(cε
n)

I cε unique positive real root of

x1+ε − xε − 1 = 0

I cε < 2
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Framework: Recharging

Recharging

I When branching on a vertex v with w(v) = 1,

set w(v) = 0 in both subproblems

I ”select v”: Borrow a weight of ε from a neighbour of v

I When branching on a vertex v with w(v) < 1
Recharge the weight of v to 1, before branching on v
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Generalized Domination problem

I also called (σ, %)-Domination, where σ, % ⊆ N

I generalizes many domination-type problems

(σ, %)-Dominating Set

Given a graph G = (V ,E ), S ⊆ V is a (σ, %)-dominating set
iff

I for all v ∈ S , |N(v) ∩ S | ∈ σ;

I for all v 6∈ S , |N(v) ∩ S | ∈ %.
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An Example

i

j

a b

c

d

e f

g

h

Let σ = {0, 1} and % = {2, 4, 8}.

Gray vertices form a (σ, %)-Dominating Set.
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σ and % finite

Choice of ε

εp,q =
1

max(p, q)
,

where p = maxσ and q = max ρ.

Example: Perfect Code

σ = {0}, and ρ = {1}.

ε = 1.
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Recharging

! domination classes de graphes clique dominante (σ, ")-domination "

Le rechargement

v

w1 w2

w3

w4

w5

ε ε
ε

ε

ε

Les sommets en gris sont dans l’ensemble (σ, #)-dominant ;
on n’a pas encore branché sur les autres sommets.

w(v) = 1

60/64
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We hope that Branch & Recharge will prove its potential as
another method to design and analyse branching algorithms.
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XI. Exercices
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Exercices I

1. The HAMILTONIAN CIRCUIT problem can be solved in time
O∗(2n) via dynamic programming or inclusion-exclusion. Construct
a O∗(3m/3) branching algorithm deciding whether a graph has a
hamiltonian circuit, where m is the number of edges.

2. Let G = (V ,E ) be a bicolored graph, i.e. its vertices are either
red or blue. Construct and analyze branching algorithms that for
input G , k1, k2 decide whether the bicolored graph G has an
independent set I with k1 red and k2 blue vertices. What is the
best running time you can establish?

3. Construct a branching algorithm for the 3-COLORING problem,
i.e. for given graph G it decides whether G is 3-colorable. The
running time should be O∗(3n/3) or even O∗(cn) for some c < 1.4.
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Exercices II

4. Construct a branching algorithm for the DOMINATING SET
problem on graphs of maximum degree 3.

5. Is the following statement true for all graphs G : ”If w is a
mirror of v and there is a maximum independent set of G not
containing v , then there is a maximum independent set containing
neither v nor w .”

6. Modify the first IS algorithm such that it always branches on a
maximum degree vertex. Provide a lower bound (for mis1a).
What is the worst-case running time of this algorithm?
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Exercices III

7. Modify the first IS algorithm such that it uses a reduction rules
on vertex of minimum degree, if it is 0 or 1, and if no such vertex
exists it branches on a maximum degree vertex (of degree greater
than three). Provide a lower bound (for mis1b). What is the
worst-case running time of this algorithm?

8. Construct a O∗(1.49n) branching algorithm to solve 3-SAT.
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More Exercices

Construct and analyse branching algorithms for the following
problems:

I Perfect Cover: Given a graph, decide whether it has a vertex
set I such that every vertex v of G belongs to precisely one
neighbourhood set N[u] for any u ∈ I .

I Max 2-SAT: Given a 2-CNF formula F , compute a truth
assignment of its variables which maximizes the number of
true clauses of F .

I Weighted Independent Set: Given a graph G = (V ,E )
with positive integral vertex weights, compute a maximum
weight independent set of G .
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