Branching Algorithms

Dieter Kratsch
Laboratoire d'Informatique Théorique et Appliquée
Université Paul Verlaine - Metz
57000 Metz Cedex 01
France

AGAPE 09, Corsica, France
May 24-29, 2009

I. Our First Independent Set Algorithm:

mis1

Independent Set

Definition (Independent Set)

Let $G=(V, E)$ be a graph. A subset $I \subseteq V$ of vertices of G is an independent set of G if no two vertices in I are adjacent.

Definition (Maximum Independent Set (MIS))
Given a graph $G=(V, E)$, compute the maximum cardinality of an independent set of G, denoted by $\alpha(G)$. [or a maximum independent set of G]

Standard Branching Rule

- For every vertex v : "there is a maximum independent set containing v, or there is a maximum independent set not containing $v "$
- Branching into two smaller subproblems: "select v " and "discard v " to be solved recursively
- "discard v ": remove v
- "select v ": remove $N[v]$
- branching rule:

$$
\alpha(G)=\max (1+\alpha(G-N[v]), \alpha(G-v))
$$

Algorithm mis1

int $\operatorname{mis} 1(G=(V, E))$;
\{
if $(\Delta(G) \geq 3)$ choose any vertex v of degree $d(v) \geq 3$ return $\max (1+\operatorname{mis} 1(G-N[v]), \operatorname{mis} 1(G-v))$;
if $(\Delta(G) \leq 2)$ compute $\alpha(G)$ in polynomial time and return the value;
\}

Correctness

- standard branching rule correct; hence branching does not miss any maximum independent set
- graphs of maximum degree two are disjoint union of paths and cycles
- $\alpha(G)$ easy to compute if $\Delta(G) \leq 2$ [exercice]
- mis1 outputs $\alpha(G)$ for input graph G
- mis1 can be modified s.t. it outputs a maximum independent set

Time Analysis via recurrence

- Running time of mis1 is $O^{*}(T(n))$, where
- $T(n)$ is largest number of base cases for any input graph G on n vertices
- Base case $=$ graph of maximum degree two for which α is computed by a polynomial time algorithm
- branching rule implies recurrence:

$$
T(n) \leq T(n-1)+T(n-d(v)-1) \leq T(n-1)+T(n-4)
$$

Solving the Recurrence

- Solutions of recurrence of form c^{n}
- Basic solutions root of characteristic polynomial

$$
x^{n}=x^{n-1}+x^{n-4}
$$

- largest root of characteristic polynomial is its unique positive real root
- Maple, Mathematica, Matlab etc.

Running Time of mis1

Theorem: Algorithm mis1 has running time $O^{*}\left(1.3803^{n}\right)$.

Question: Is this the worst-case running time of mis1? [Exercice]
II. Fundamental Notions and Time Analysis

Branching Algorithms

are also called

- branch \& bound algorithms
- backtracking algorithms
- search tree algorithms
- branch \& reduce algorithms
- splitting algorithms

The technique is also called "Pruning the search tree"
(e.g. in Woeginger's well-known survey).

Branching and Reduction Rules

Branching algorithms are recursively applied to instances of a problem using branching rules and reduction rules.

- Branching rules: solve a problem instance by recursively solving smaller instances
- Reduction rules:
- simplify the instance
- (typically) reduce the size of the instance

Search Trees

- Search Tree:
used to illustrate, understand and analyse an execution of a branching algorithm
- root: assign the input to the root
- node: assign to each node a solved problem instance
- child: each instance reached by a branching rule is assigned to a child of the node of the original instance of the problem

A search tree

Analysing a Branching Algorithm

- Correctness:

Correctness of reduction and branching rules

- Running Time:

Upper Bound the (maximum) number of leaves in any search tree of an input of size n :

Analysing a Branching Algorithm

- Correctness:

Correctness of reduction and branching rules

- Running Time:

Upper Bound the (maximum) number of leaves in any search tree of an input of size n :

1. Define a size of a problem instance.
2. Lower bound the progress made by the algorithm at each branching step.
3. Compute the collection of recurrences for all branching rules.
4. Solve all those recurrences (to obtain a running time of the form $O^{*}\left(c_{i}^{n}\right)$ for each)
5. Take the worst case over all solutions: $O^{*}\left(c^{n}\right)$ with $c=\max c_{i}$

Analysing a Branching Algorithm

- Correctness:

Correctness of reduction and branching rules

- Running Time:

Upper Bound the (maximum) number of leaves in any search tree of an input of size n :

1. Define a size of a problem instance.
2. Lower bound the progress made by the algorithm at each branching step.
3. Compute the collection of recurrences for all branching rules.
4. Solve all those recurrences (to obtain a running time of the form $O^{*}\left(c_{i}^{n}\right)$ for each).
5. Take the worst case over all solutions: $O^{*}\left(c^{n}\right)$ with $c=\max c_{i}$

Analysing a Branching Algorithm

- Correctness:

Correctness of reduction and branching rules

- Running Time:

Upper Bound the (maximum) number of leaves in any search tree of an input of size n :

1. Define a size of a problem instance.
2. Lower bound the progress made by the algorithm at each branching step.
3. Compute the collection of recurrences for all branching rules.
4. Solve all those recurrences (to obtain a running time of the form $O^{*}\left(c_{i}^{n}\right)$ for each $)$

Analysing a Branching Algorithm

- Correctness:

Correctness of reduction and branching rules

- Running Time:

Upper Bound the (maximum) number of leaves in any search tree of an input of size n :

1. Define a size of a problem instance.
2. Lower bound the progress made by the algorithm at each branching step.
3. Compute the collection of recurrences for all branching rules.
4. Solve all those recurrences (to obtain a running time of the form $O^{*}\left(c_{i}^{n}\right)$ for each).
5. Take the worst case over all solutions: $O^{*}\left(c^{n}\right)$ with $c=\max c_{i}$

Analysing a Branching Algorithm

- Correctness:

Correctness of reduction and branching rules

- Running Time:

Upper Bound the (maximum) number of leaves in any search tree of an input of size n :

1. Define a size of a problem instance.
2. Lower bound the progress made by the algorithm at each branching step.
3. Compute the collection of recurrences for all branching rules.
4. Solve all those recurrences (to obtain a running time of the form $O^{*}\left(c_{i}^{n}\right)$ for each).
5. Take the worst case over all solutions: $O^{*}\left(c^{n}\right)$ with $c=\max c_{i}$

Simple Time Analysis: Search Tree

- Assumption: for any node of search tree polynomial running time.
- Time analysis of branching algorithms means to upper bound the number of nodes of any search tree of an input of size n.
- Let $T(n)$ be (an upper bound of) the maximum number of leaves of any search tree of an input of size n.
- Running time of corresponding branching algorithm: $O^{*}(T(n))$
- Branching rules to be analysed separately

Simple Time Analysis: Branching Vectors

- Application of branching rule b to any instance of size n
- Problem branches into $r \geq 2$ subproblems of size at most $n-t_{1}, n-t_{2}, \ldots, n-t_{r}$ for all instances of size n
- $\vec{b}=\left(t_{1}, t_{2}, \ldots t_{r}\right)$ branching vector of branching rule b.

Simple Time Analysis: Recurrences

- Linear recurrence for the maximum number of leaves of a search tree corresponding to $\vec{b}=\left(t_{1}, t_{2}, \ldots t_{r}\right)$:

$$
T(n) \leq T\left(n-t_{1}\right)+T\left(n-t_{2}\right)+\cdots+T\left(n-t_{r}\right)
$$

- Largest solution of any such linear recurrence (obtained by a branching vector) is of form c^{n} where c is the unique positive real root of the characteristic polynomial:

$$
x^{n}-x^{n-t_{1}}-x^{n-t_{2}}-\cdots-x^{n-t_{r}}=0
$$

- This root $c>1$ is called branching factor of \vec{b} :

$$
\tau\left(t_{1}, t_{2}, \ldots, t_{r}\right)=c
$$

Properties of Branching Vectors [Kullmann]

$$
\text { Let } r \geq 2 \text {. Let } t_{i}>0 \text { for all } i \in\{1,2, \ldots r\} \text {. }
$$

1. $\tau\left(t_{1}, t_{2}, \ldots, t_{r}\right) \in(1, \infty)$.
2. $\tau\left(t_{1}, t_{2}, \ldots, t_{r}\right)=\tau\left(t_{\pi(1)}, t_{\pi(2)}, \ldots, t_{\pi(r)}\right)$
for any permutation π.
3. $\tau\left(t_{1}, t_{2}, \ldots, t_{r}\right)<\tau\left(t_{1}^{\prime}, t_{2}, \ldots, t_{r}\right)$
if $t_{1}>t_{1}^{\prime}$.

Balancing Branching Vectors

Let i, j, k be positive reals.

1. $\tau(k, k) \leq \tau(i, j)$ for all branching vectors (i, j) satisfying $i+j=2 k$.
2. $\tau(i, j)>\tau(i+\epsilon, j-\epsilon)$ for all $0<i<j$ and $\epsilon \in\left(0, \frac{j-i}{2}\right)$.

Example :

- $\tau(3,3)=\sqrt[3]{2}=1.2600$
- $\tau(2,4)=\tau(4,2)=1.2721$
- $\tau(1,5)=\tau(5,1)=1.3248$

Some Factors of Branching Vectors

Compute a table with $\tau(i, j)$ for all $i, j \in\{1,2,3,4,5,6\}$:

$$
\begin{gathered}
T(n) \leq T(n-i)+T(n-j) \Rightarrow x^{n}=x^{n-i}+x^{n-j} \\
x^{j}-x^{j-i}-1=0
\end{gathered}
$$

	1	2	3	4	5	6
1	2.0000	1.6181	1.4656	1.3803	1.3248	1.2852
2	1.6181	1.4143	1.3248	1.2721	1.2366	1.2107
3	1.4656	1.3248	1.2560	1.2208	1.1939	1.1740
4	1.3803	1.2721	1.2208	1.1893	1.1674	1.1510
5	1.3248	1.2366	1.1939	1.1674	1.1487	1.1348
6	1.2852	1.2107	1.1740	1.1510	1.1348	1.1225

Addition of Branching Vectors

- "Sum up" consecutive branchings
- "sum" (overall branching vector) easy to find via search tree
- useful technique to deal with tight branching vector (i, j)

Example

- whenever algorithm (i, j)-branches it immediately (k, l)-branches on first subproblem
- overall branching vector $(i+k, i+l, j)$

Addition of Branching Vectors: Example

$$
(5,3,4) \quad(4,5,3,6)
$$

III. Preface

Branching algorithms

- one of the major techniques to construct FPT and ModEx Algorithms
- need only polynomial space
- major progress due to new methods of running time analysis
- many best known ModEx algorithms are branching algorithms

Challenging Open Problem

How to determine worst case running time of branching algorithms?

History: Before the year 2000

- Davis, Putnam (1960): SAT
- Davis, Logemann, Loveland (1962): SAT
- Tarjan, Trojanowski (1977): Independent Set
- Robson (1986): Independent Set
- Monien, Speckenmeyer (1985): 3-SAT

History: After the Year 2000

- Beigel, Eppstein (2005): 3-Coloring
- Fomin, Grandoni, Kratsch (2005): Dominating Set
- Fomin, Grandoni, Kratsch (2006): Independent Set
- Razgon; Fomin, Gaspers, Pyatkin (2006): FVS

IV. Our Second Independent Set Algorithm:

 mis2
Branching Rule

- For every vertex v :
- "either there is a maximum independent set containing v,
- or there is a maximum independent set containing a neighbour of v ".
- Branching into $d(v)+1$ smaller subproblems: "select v " and "select y " for every $y \in N(v)$
- Branching rule:

$$
\alpha(G)=\max \{1+\alpha(G-N[u]): u \in N[v]\}
$$

Algorithm mis2

int $\operatorname{mis} 2(G=(V, E))$;
\{
if $(|V|=0)$ return 0 ;
choose a vertex v of minimum degree in G

$$
\text { return } 1+\max \{\operatorname{mis} 2(G-N[y]): y \in N[v]\} ;
$$

\}

Analysis of the Running Time

- Input Size number n of vertices of input graph
- Recurrence:

$$
T(n) \leq(d+1) \cdot T(n-d-1)
$$

where d is the degree of the chosen vertex v.

- Solution of recurrence:

$$
O^{*}\left((d+1)^{n /(d+1)}\right)
$$

(maximum $d=2$)

- Running time of mis2: $O^{*}\left(3^{n / 3}\right)$.

Enumerating all maximal independent sets I

Theorem:
Algorithm mis2 enumerates all maximal independent sets of the input graph G in time $O^{*}\left(3^{n / 3}\right)$.

- to any leaf of the search tree a maximal independent set of G is assigned
- each maximal independent set corresponds to a leaf of the search tree

Corollary :
A graph on n vertices has $O^{*}\left(3^{n / 3}\right)$ maximal independent sets.

Enumerating all maximal independent sets II

Moon Moser 1962
The largest number of maximal independent sets in a graph on n vertices is $3^{n / 3}$.

Papadimitriou Yannakakis 1984
There is a listing algorithm for the maximal independent sets of a graph having polynomial delay.

V. Our Third Independent Set Algorithm:

mis3

Contents

- History of branching algorithms to compute a maximum independent set
- Branching and reduction rules for Independent Set algorithms
- Algorithm mis3
- Running time analysis of algorithm mis3

History

Branching Algorithms for Maximum Independent Set

- $O\left(1.2600^{n}\right)$ Tarjan, Trojanowski (1977)
- $O\left(1.2346^{n}\right) \quad$ Jian (1986)
- $O\left(1.2278^{n}\right) \quad$ Robson (1986)
- $O\left(1.2202^{n}\right)$ Fomin, Grandoni, Kratsch (2006)

Domination Rule

Reduction rule: "If $N[v] \subseteq N[w]$ then remove w."

If v and w are adjacent vertices of a graph $G=(V, E)$ such that $N[v] \subseteq N[w]$, then

$$
\alpha(G)=\alpha(G-w)
$$

Proof by exchange:
If I is a maximum independent set of G such that $w \in I$ then $I-w+v$ is a maximum independent set of G.

Standard branching: "select v " and "discard v "

$$
\alpha(G)=\max (1+\alpha(G-N[v]), \alpha(G-v)) .
$$

To be refined soon.

"Discard v " implies "Select two neighbours of v "

Lemma:

Let v be a vertex of the graph $G=(V, E)$. If no maximum independent set of G contains v then every maximum independent set of G contains at least two vertices of $N(v)$.

Proof by exchange: Assume no maximum independent set containing v.

- If I is a mis containing no vertex of $N[v]$ then $I+v$ is a mis, contraction.
- If I is a mis such that $v \notin I$ and $I \cap N(v)=\{w\}$, then $I-w+v$ is a mis of G, contradiction.

Mirrors

Let $N^{2}(v)$ be the set of vertices in distance 2 to v in G. A vertex $u \in N^{2}(v)$ is a mirror of v if $N(v) \backslash N(u)$ is a clique.

Mirrors

Let $N^{2}(v)$ be the set of vertices in distance 2 to v in G. A vertex $u \in N^{2}(v)$ is a mirror of v if $N(v) \backslash N(u)$ is a clique.

Mirrors

Let $N^{2}(v)$ be the set of vertices in distance 2 to v in G. A vertex $u \in N^{2}(v)$ is a mirror of v if $N(v) \backslash N(u)$ is a clique.

Mirrors

Let $N^{2}(v)$ be the set of vertices in distance 2 to v in G. A vertex $u \in N^{2}(v)$ is a mirror of v if $N(v) \backslash N(u)$ is a clique.

Mirror Branching

Mirror Branching: Refined Standard Branching
If v is a vertex of the graph $G=(V, E)$ and $M(v)$ the set of mirrors of v then

$$
\alpha(G)=\max (1+\alpha(G-N[v]), \alpha(G-(M(v)+v)) .
$$

Proof by exchange: Assume no mis of G contains v

- By the lemma, every mis of G contains two vertices of $N(v)$.
- If u is a mirror then $N(v) \backslash N(u)$ is a clique; thus at least one vertex of every mis belongs to $N(u)$.
- Consequently, no mis contains u.

Simplicial Rule

Reduction Rule: Simplicial Rule

Let $G=(V, E)$ be a graph and v be a vertex of G such that $N[v]$ is a clique. Then

$$
\alpha(G)=1+\alpha(G-N[v]) .
$$

Proof:
Every mis contains v by the Lemma.

Branching on Components

Component Branching

Let $G=(V, E)$ be a disconnected graph and let C be a component of G. Then

$$
\alpha(G)=\alpha(G-C)+\alpha(C)
$$

Well-known property of the independence number $\alpha(G)$.

Separator branching

$S \subseteq V$ is a separator of $G=(V, E)$ if $G-S$ is disconnected.

Separator Branching: "Branch on all independent sets of separator $S^{\prime \prime}$.

If S is a separator of the graph $G=(V, E)$ and $\mathcal{I}(S)$ the set of all independent subsets $I \subseteq S$ of G, then

$$
\alpha(G)=\max _{A \in \mathcal{I}(S)}|A|+\alpha(G-(S \cup N[A]))
$$

Using Separator Branching

- separator S small, and
- easy to find.
mis3 uses "separator branching on S " only if
- $S \subseteq N^{2}(v)$, and
- $|S| \leq 2$

Algorithm mis3: Small Degree Vertices

- minimum degree of instance graph G at most 3
- v vertex of minimum degree
- if $d(v)$ is equal to 0 or 1 then apply simplicial rule
(i) $\mathbf{d}(\mathbf{v})=\mathbf{0}$: "select v "; recursively call mis3 $(G-v)$
(ii) $\mathbf{d}(\mathbf{v})=\mathbf{1}$: " select v "; recursively call mis3 $(G-N[v])$

Algorithm mis3: Degree Two Vertices

- $\mathbf{d}(\mathbf{v})=2: u_{1}$ and u_{2} neighbors of v
(i) $u_{1} u_{2} \in E: N[v]$ clique; simplicial rule: select v. call $\operatorname{mis} 3(G-N[v])$
(ii) $u_{1} u_{2} \notin E$.
$\left|\mathbf{N}^{\mathbf{2}}(\mathbf{v})\right|=\mathbf{1}$: separator branching on $S=N^{2}(v)=\{w\}$ branching vector $\left(\left|N^{2}[v] \cup N[w]\right|,\left|N^{2}[v]\right|\right)$, at least $(5,4)$.
$\left|\mathbf{N}^{\mathbf{2}}(\mathbf{v})\right| \geq \mathbf{2}$: mirror branching on v branching vector $\left(N^{2}[v], N[v]\right)$, at least $(5,3)$.

Worst case for $d(v)=2$:

Algorithm mis3: Degree Two Vertices

- $\mathbf{d}(\mathbf{v})=2: u_{1}$ and u_{2} neighbors of v
(i) $u_{1} u_{2} \in E: N[v]$ clique; simplicial rule: select v. call $\operatorname{mis} 3(G-N[v])$
(ii) $u_{1} u_{2} \notin E$.
$\left|\mathbf{N}^{\mathbf{2}}(\mathbf{v})\right|=\mathbf{1}$: separator branching on
$S=N^{2}(v)=\{w\}$
branching vector $\left(\left|N^{2}[v] \cup N[w]\right|,\left|N^{2}[v]\right|\right)$, at least $(5,4)$.
$\left|\mathbf{N}^{\mathbf{2}}(\mathbf{v})\right| \geq \mathbf{2}$: mirror branching on v branching vector $\left(N^{2}[v], N[v]\right)$, at least $(5,3)$.

Worst case for $d(v)=2$:

$$
\tau(5,3)=1.1939
$$

Analysis for $d(v)=2$

$\left|\mathbf{N}^{\mathbf{2}}(\mathbf{v})\right|=\mathbf{1}$: separator branching on $S=N^{2}(v)=\{w\}$
Subproblem 1: "select v and w " call mis3 $(G-(N[v] \cup N[w]))$
Subproblem 2: "select u_{1} and u_{2} "; call mis3($\left.G-N^{2}[v]\right)$
Branching vector $\left(|N[v] \cup N[w]|,\left|N^{2}[v]\right|\right) \geq(5,4)$.
$\left|\mathbf{N}^{\mathbf{2}}(\mathbf{v})\right| \geq \mathbf{2}$: mirror branching on v
"discard v ": select both neighbors of v, u_{1} and u_{2}
"select" v ": call mis3($G-N[v]$)
Branching vector $\left(\left|N^{2}[v]\right|,|N[v]|\right) \geq(5,3)$

Algorithm mis3: Degree Three Vertices

$\mathbf{d}(\mathbf{v})=3: u_{1}, u_{2}$ and u_{3} neighbors of v in G.
Four cases: $|E(N(v))|=0,1,2,3$
Case (i): $|E(N(v))|=0$, i.e. $N(v)$ independent set.
every u_{i} has a neighbor in $N^{2}(v)$; else domination rule applies

Subcase (a): number of mirrors 0 [other subcases: 1 or 2]

- each vertex of $N^{2}(v)$ has precisely one neighbor in $N(v)$
- minimum degree of G at least 3 , hence every u_{i} has at least two neighbors in $N^{2}(v)$

$\mathbf{d}(\mathbf{v})=3, N(v)$ independent set, v has no mirror

Algorithm branches into four subproblems:

- select v
- discard v, select u_{1}, select u_{2}
- discard v, select u_{1}, discard u_{2}, select u_{3}
- discard v, discard u_{1}, select u_{2}, select u_{3}

Branching vector $(4,7,8,8)$ and $\tau(4,7,8,8)=1.2406$.
More subcases. More Cases. ...

Exercice:
Analyse the Subcases (b) and (c) of Case (i), and Case (ii).

Algorithm mis3: Degree Three Vertices

Case (iii): $|E(N(x))|=2$.
$u_{1} u_{2}$ and $u_{2} u_{3}$ edges of $N(v)$.
Mirror branching on v :
"select v ": call mis3($G-N[v]$)
"discard v ": discard v, select u_{1} and u_{3}
Branching factor $(4,5)$ and $\tau(4,5)=1.1674$

Case (iv): $|E(N(x))|=3$. simplicial rule: "select v "

Worst case for $d(v)=3$:

Algorithm mis3: Degree Three Vertices

Case (iii): $|E(N(x))|=2$.
$u_{1} u_{2}$ and $u_{2} u_{3}$ edges of $N(v)$.
Mirror branching on v :
"select v ": call mis3 $(G-N[v])$
"discard v ": discard v, select u_{1} and u_{3}
Branching factor $(4,5)$ and $\tau(4,5)=1.1674$

Case (iv): $|E(N(x))|=3$.
simplicial rule: "select v "

Worst case for $d(v)=3$:

$$
\tau(4,7,8,8)=1.2406
$$

Algorithm mis3: Large Degree Vertices

Maximum Degree Rule $[\delta(G) \geq 4]$
"Mirror Branching on a maximum degree vertex"
$\mathbf{d}(\mathbf{v}) \geq \mathbf{6}:$
mirror branching on v
Branching vector $(d(v)+1,1) \geq(7,1)$

Worst case for $d(v) \geq 6$:

Algorithm mis3: Large Degree Vertices

Maximum Degree Rule $[\delta(G) \geq 4]$
"Mirror Branching on a maximum degree vertex"
$\mathbf{d}(\mathbf{v}) \geq \mathbf{6}:$
mirror branching on v
Branching vector $(d(v)+1,1) \geq(7,1)$

Worst case for $d(v) \geq 6$:

$$
\tau(7,1)=1.2554
$$

Algorithm mis3: Regular Graphs

Mirror branching on r-regular graph instances:
Not taken into account !

For every r, on any path of the search tree from the root to a leaf there is only one r-regular graph.

Algorithm mis3: Degree Five Vertices $\Delta=5$ and $\delta=4$

Mirror branching on a vertex v with a neighbor w s.t. $d(v)=5$ and $d(w)=4$

Case (i): v has a mirror:
Branching vector $(2,6), \tau(2,6)=1.2107$.
Case (ii): v has no mirror: immediately mirror branching on w in $G-v$
$d(w)=3$ in $G-v$: Worst case branching factor for degree three: $(4,7,8,8)$ Adding branching vector to $(6,1)$ sums up to $(5,6,8,9,9)$

Worst case for $d(v)=5$:

Algorithm mis3: Degree Five Vertices $\Delta=5$ and $\delta=4$

Mirror branching on a vertex v with a neighbor w s.t. $d(v)=5$ and $d(w)=4$

Case (i): v has a mirror:
Branching vector $(2,6), \tau(2,6)=1.2107$.
Case (ii): v has no mirror: immediately mirror branching on w in $G-v$
$d(w)=3$ in $G-v$: Worst case branching factor for degree three: $(4,7,8,8)$ Adding branching vector to $(6,1)$ sums up to $(5,6,8,9,9)$

Worst case for $d(v)=5$:

$$
\tau(5,6,8,9,9)=1.2547
$$

Running time of Algorithm mis 3

Theorem:
Algorithm mis3 runs in time $O^{*}\left(1.2554^{n}\right)$.

Theorem:
The algorithm of Tarjan and Trojanowski has running time $O^{*}\left(2^{n / 3}\right)=O^{*}\left(1.2600^{n}\right) .\left[O^{*}\left(1.2561^{n}\right)\right]$

VI. A DPLL Algorithm

The Satisfiability Problem of Propositional Logic

Boolean variables, literals, clauses, CNF-formulas

- A CNF-formula, i.e. a boolean formula in conjunctive normal form is a conjunction of clauses

$$
F=\left(c_{1} \wedge c_{2} \wedge \cdots \wedge c_{r}\right)
$$

- A clause

$$
c=\left(\ell_{1} \vee \ell_{2} \vee \cdots \vee \ell_{t}\right)
$$

is a disjunction of literals.

- A k-CNF formula is a CNF-formula in which each clause consists of at most k literals.

Satisfiability

truth assignment, satisfiable CNF-formulas

- A truth assignment assigns boolean values (false, true) to the variables, and thus to the literals, of a formula.
- A CNF-formula F is satisfiable if there is a truth assignment such that F evaluates to true.
- A CNF-formula is satisfiable if each clause contains at least one true literal.

The Problems SAT and k-SAT

Definition (Satisfiability (SAT))
Given a CNF-formula F, decide whether F is satisfiable.

Definition (k-Satisfiability (k-SAT))
Given a k-CNF F, decide whether F is satisfiable.

$$
F=\left(x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee \neg x_{4}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right)
$$ algorithm

- Davis, Putnam 1960
- Davis, Logemann, Loveland (1962)

Reduction and Branching Rules

- [UnitPropagate] If all literals of a clause c except literal ℓ are false (under some partial assignment), then ℓ must be set to true.
- [PureLiteral] If a literal ℓ occurs pure in F, i.e. ℓ occurs in F but its negation does not occur, then ℓ must be set to true.
- [Branching] For any variable x_{i}, branch into " x_{i} true" and " x_{i} false".

VII. The algorithm of Monien and

Speckenmeyer

Assigning Truth Values via Branching

- Recursively compute partial assignment(s) of given k-CNF formula F
- Given a partial truth assignment of F the corresponding k-CNF formula F^{\prime} is obtained by removing all clauses containing a true literal, and by removing all false literals.
- Subproblem generated by the branching algorithm is a k-CNF formula
- Size of a k-CNF formula is its number of variables

The Branching Rule

Branching on a clause

- Branching on clause $c=\left(\ell_{1} \vee \ell_{2} \vee \cdots \vee \ell_{t}\right)$ of k-CNF formula F
- into t subproblems by fixing some truth values:
- $F_{1}: \quad \ell_{1}=$ true
- $F_{2}: \quad \ell_{1}=$ false, $\ell_{2}=$ true
- $F_{3}: \quad \ell_{1}=$ false, $\ell_{2}=$ false, $\ell_{3}=$ true
- $F_{t}: \quad \ell_{1}=$ false, $\ell_{2}=$ false, $\cdots, \ell_{t-1}=$ false, $\ell_{t}=$ true
F is satisfiable iff at least one $F_{i}, i=1,2, \ldots, t$ is satisfiable.

Time Analysis I

- Assuming F consists of n variables then $F_{i}, i=1,2, \ldots, t$, consists of $n-i$ (non fixed) variables.
- Branching vector is $(1,2, \ldots, t)$, where $t=|c|$.
- Solve linear recurrence

$$
T(n) \leq T(n-1)+T(n-2)+\cdots+T(n-t)
$$

- Compute the unique positive real root of

$$
x^{t}=x^{t-1}+x^{t-2}+x^{t-3}+\cdots+1=0
$$

which is equivalent to

$$
x^{t+1}-2 x^{t}+1=0
$$

Time Analysis II

For a clause of size t, let β_{t} be the branching factor.

Branching Factors: $\beta_{2}=1.6181, \beta_{3}=1.8393, \beta_{4}=1.9276$, $\beta_{5}=1.9660$, etc.

There is a branching algorithm solving 3-SAT in time $O^{*}\left(1.8393^{n}\right)$.

Speeding Up the Branching Algorithm

Observation: "The smaller the clause the better the branching factor."

Key Idea: Branch on a clause c of minimum size. Make sure that $|c| \leq k-1$.

Halting and Reduction Rules:

- If $|c|=0$ return "unsatisfiable".
- If $|c|=1$ reduce by setting the unique literal true.
- If F is empty then return "satisfiable".

Monien Speckenmeyer 1985

For any $k \geq 3$, there is an $O^{*}\left(\beta_{k-1}{ }^{n}\right)$ algorithm to solve k-SAT.

3-SAT can be solved by an $O^{*}\left(1.6181^{n}\right)$ time branching algorithm.

Autarky: Key Properties

Definition

A partial truth assignment t of a CNF formula F is called autark if for every clause c of F for which the value of at least one literal is set by t, there is a literal ℓ_{i} of c such that $t\left(\ell_{i}\right)=$ true.

Let t be a partial assignment of F.

- t autark: Any clause c for which a literal is set by t is true. Thus F is satisfiable iff F^{\prime} is satisfiable, where F^{\prime} is obtained by removing all clauses c set true by t.
\Rightarrow reduction rule
- t not autark: There is a clause c for which a literal is set by t but c is not true under t. Thus in the CNF-formula corresponding to t clause c has at most $k-1$ literals.
$\Rightarrow \quad$ branch always on a clause of at most $k-1$ literals

VIII. Lower Bounds

Time Analysis of Branching Algorithms

Available Methods

- simple (or classical) time analysis
- Measure \& Conquer, quasiconvex analysis, etc.
- based on recurrences

What can be achieved?

- establish upper bounds on the (worst-case) running time
- new methods achieve improved bounds for same algorithm
- no proof for tightness of bounds

Limits of Current Time Analysis

We cannot determine the worst-case running time of branching algorithms !

Consequences

- stated upper bounds of algorithms may (significantly) overestimate running times
- How to compare branching algorithms if their worst-case running time is unknown?

Limits of Current Time Analysis

We cannot determine the worst-case running time of branching algorithms!

Consequences

- stated upper bounds of algorithms may (significantly) overestimate running times
- How to compare branching algorithms if their worst-case running time is unknown?

We strongly need better methods for Time Analysis !
Better Methods of Analysis lead to Better Algorithms

Why study Lower Bounds of Worst-Case Running Time?

- Upper bounds on worst case running time of a Branching algorithms seem to overestimate the running time.
- Lower bounds on worst case running time of a particular branching algorithm can give an idea how far current analysis of this algorithm is from being tight.
- Large gaps between lower and upper bounds for some important branching algorithms.
- Study of lower bounds leads to new insights on particular branching algorithm.

Algorithm mis1 Revisited

$$
\text { int } \operatorname{mis} 1(G=(V, E)) \text {; }
$$

\{
if $(\Delta(G) \geq 3)$ choose any vertex v of degree $d(v) \geq 3$ return $\max (1+\operatorname{mis} 1(G-N[v]), \operatorname{mis} 1(G-v))$;
if $(\Delta(G) \leq 2)$ compute $\alpha(G)$ in polynomial time and return the value;
\}

Algorithm mis1a

int $\operatorname{mis} 1(G=(V, E))$;
\{
if $(\Delta(G) \geq 3)$ choose a vertex v of maximum degree return $\max (1+\operatorname{mis} 1(G-N[v]), \operatorname{mis} 1(G-v))$;
if $(\Delta(G) \leq 2)$ compute $\alpha(G)$ in polynomial time and return the value;
\}

Algorithm mis1b

int $\operatorname{mis} 1(G=(V, E))$;
\{
if there is a vertex v with $d(v)=0$ return $1+\operatorname{mis} 1(G-v)$;
if there is a vertex v with $d(v)=1$ return $1+\operatorname{mis} 1(G-N[v])$;
if $(\Delta(G) \geq 3)$ choose a vertex v of maximum degree return $\max (1+\operatorname{mis} 1(G-N[v]), \operatorname{mis} 1(G-v))$;
if $(\Delta(G) \leq 2)$ compute $\alpha(G)$ in polynomial time and return the value;
\}

Upper Bounds of Running time

Simple Running Time Analysis

- Branching vectors of standard branching: $(1, d(v)+1)$
- Running time of algorithm mis1: $O^{*}\left(1.3803^{n}\right)$
- Running time of modifications mis1a and mis1b: $O^{*}\left(1.3803^{n}\right)$

Upper Bounds of Running time

Simple Running Time Analysis

- Branching vectors of standard branching: $(1, d(v)+1)$
- Running time of algorithm mis1: $O^{*}\left(1.3803^{n}\right)$
- Running time of modifications mis1a and mis1b: $O^{*}\left(1.3803^{n}\right)$

Does all three algorithms have same worst-case running time ?

Related Questions

- What is the worst-case running time of these three algorithms on graphs of maximum degree three?
- How much can we improve the upper bounds of the running times of those three algorithms by Measure \& Conquer?
- (Again) what is the worst-case running time of algorithm mis1?

A lower bound for mis1

Lower bound graph

- Consider the graphs $G_{n}=\left(V_{n}, E_{3}\right)$
- Vertex set: $\{1,2, \ldots, n\}$
- Edge set: $\{i, j\} \in E_{3} \Leftrightarrow|i-j| \leq 3$

Execution of mis1 on the graph G_{n}

Tie breaks!

- Branch on smallest vertex of instance
- Always a vertex of degree three
- Every instance of form $G_{n}[\{i, i+1, \ldots, n\}]$
- Branching on instance $G_{n}[\{i, i+1, \ldots, n\}]$ calls mis1 on $G_{n}[\{i+1, i+2, \ldots, n\}]$ and $G_{n}[\{i+4, i+5, \ldots, n\}]$

Recurrence for lower bound of worst-case running time:

$$
T(n)=T(n-1)+T(n-4)
$$

Theorem:
The worst-case running time of algorithm mis1 is $\Theta^{*}\left(c^{n}\right)$, where $c=1.3802 \ldots$ is the unique positive root of $x^{4}-x^{3}-1$.

Exercice:

Determine lower bounds for the worst-case running time of mis1a and mis1b.

Algorithm mis2 Revisited

$$
\begin{aligned}
& \text { int } \operatorname{mis} 2(G=(V, E)) \text {; } \\
& \{ \\
& \text { if }(|V|=0) \text { return } 0 \text {; } \\
& \text { choose a vertex } v \text { of minimum degree in } G \\
& \quad \text { return } 1+\max \{\operatorname{mis} 2(G-N[y]): y \in N[v]\} \text {; } \\
& \}
\end{aligned}
$$

Theorem:
The running time of algorithm mis2 is $O^{*}\left(3^{n / 3}\right)$. Algorithm mis2 enumerates all maximal independent sets of the input graph.

A lower bound for mis2

- Lower bound graph G_{k} : disjoint union of k triangles.
- Algorithm mis2 applied to G_{k} : chooses a vertex of any triangle, branches into three subproblems G_{k-1};
(by removing a triangle from G_{k})
- Search tree has $3^{k}=3^{n / 3}$ leaves;

Theorem:
The worst-case running time of algorithm mis2 is $\Theta^{*}\left(3^{n / 3}\right)$.

The Algorithm tt of Tarjan and Trojanowski

- Algorithm tt:
- Branching algorithm to compute a maximum independent set of a graph
- published in 1977
- lengthy and tedious case analysis
- size of instance: number of vertices
- "Simple running time analysis": $O^{*}\left(2^{n / 3}\right)=O^{*}\left(1.2600^{n}\right)$
- More precisely, author's analysis establishes $O^{*}\left(1.2561^{n}\right)$.

Important Properties of $t t$

Minimum Degree at most 4
If the minimum degree of the problem instance G is at most 4 then algorithm tt runs through plenty of cases.

Minimum Degree at least 5
Either G is 5 -regular or algorithm $t t$ "chooses ANY vertex w of degree at least 6 and branches to $G-N[w]$ (select w) and $G-w($ discard $w)$.

Important Properties of $t t$

Minimum Degree at most 4
If the minimum degree of the problem instance G is at most 4 then algorithm tt runs through plenty of cases.

Minimum Degree at least 5
Either G is 5 -regular or algorithm tt "chooses ANY vertex w of degree at least 6 and branches to $G-N[w]$ (select w) and $G-w($ discard $w) "$.

Lower bound graphs of minimum degree 6

Lower Bound Graphs

- LB graphs: For all positive integers n, $G_{n}=\left(\{1,2, \ldots, n\}, E_{6}\right)$, where

$$
\{i, j\} \in E_{6} \Leftrightarrow|i-j| \leq 6
$$

- Tie break: For graphs of minimum degree 6, the algorithm chooses smallest (resp. leftmost) vertex for branching.
- Branching "select[i]" removes $i, i+1, \ldots i+6$; "discard[i]" removes i; thus tt on G_{n} branches to G_{n-7} and G_{n-1}.

Branching

An Almost Tight Lower Bound

Definition

Let $T(n)$ be the number of leaves in the search tree obtained when executing algorithm $t t$ on input graph G_{n} using the specified tie break rules.

Recurrence

$$
T(n)=T(n-7)+T(n-1)
$$

Lower Bound of tt
The running time of algorithm $t t$ is $\Omega^{*}\left(1.2555^{n}\right)$.

An Almost Tight Lower Bound

Definition

Let $T(n)$ be the number of leaves in the search tree obtained when executing algorithm tt on input graph G_{n} using the specified tie break rules.

Recurrence

$$
T(n)=T(n-7)+T(n-1)
$$

Lower Bound of tt
The running time of algorithm $t t$ is $\Omega^{*}\left(1.2555^{n}\right)$.

REMINDER: Upper Bound $O^{*}\left(1.2561^{n}\right)$.

Do we need lower bounds for other ModEx algorithms?

- Dynamic Programming
- Inclusion-Exclusion
- Treewidth Based
- Subset Convolution

Often claimed: "Our algorithm is faster on practical instances than its (worst case running) time we claim."

For branching algorithms the situation seems to be even better:

- faster than claimed running time on all instances
- hard to construct instances that even need a close running time
- "much better on many instances"?

IX. Memorization

Memorization: To be Used on Branching Algorithms

- GOAL: Reduction of running time of branching algorithms
- Use of exponential space instead of polynomial space
- Introduced by Robson (1986): Memorization for a MIS algorithm
- Theoretical Interest: allows to obtain branching algorithm of best running time for various well-studied NP-hard problems
- Practical Importance doubtful: high memory requirements

How does it work?

Basic Ideas

- Pruning the search tree: solve less subproblems
- Solutions of subproblems already solved to be stored in exponential-size database
- Solve subproblem once; when to be solved again, look up the solution in database
- query time in database logarithmic in number of stored solutions
- cost of each look up is polynomial.

Memorization can be applied to many branching algorithms

Once again Algorithm mis1

int $\operatorname{mis} 1(G=(V, E))$;
\{
if $(\Delta(G) \geq 3)$ choose any vertex v of degree $d(v) \geq 3$ return $\max (1+\operatorname{mis} 1(G-N[v]), \operatorname{mis} 1(G-v))$;
if $(\Delta(G) \leq 2)$ compute $\alpha(G)$ in polynomial time and return the value;
\}

Theorem:
Algorithm mis1 has running time $O^{*}\left(1.3803^{n}\right)$ and uses only polynomial space.

Reduction of the Running Time of mis1

The algorithm

- Having solved an instance G^{\prime}, an induced subgraph of input graph G, store ($G^{\prime}, \alpha\left(G^{\prime}\right)$) in a database.
- Before solving any instance, check whether its solution is already available in database.
- Input graph G has at most 2^{n} induced subgraphs.
- Database can be implemented such that each query takes time logarithmic in its size, thus polynomial in n.

Analysis of the Exponential Space algorithm

Upper bound of the running time of original polynomial space branching algorithm is needed to analyse the exponential space algorithm.

- Search tree of mis1 (G) on any graph of n vertices has $T(n)$ leaves: $T(n) \leq 1.3803^{n}$.
- Let $T_{h}(n), 0 \leq h \leq n$, be the maximum number of subproblems of size h solved when calling mis1(G) for any graph of n.
- $T_{h}(n)$ maximum number of nodes of the subtree corresponding to an instance of h vertices.
- Similar to analysis of $T(n)$, one obtains:

$$
T_{h}(n) \leq 1.3803^{n-h}
$$

Balance to analyse I

To analyse the running time a balancing argument depending on the value of h is used.

How many instances of size h are solved?

- $T_{h}(n) \leq\binom{ n}{h}$ since G has at most $\binom{n}{h}$ induced subgraphs on h vertices.
- $T_{h}(n) \leq 1.3803^{n-h}$

$$
T_{h}(n) \leq \min \left(\binom{n}{h}, 1.3803^{n-h}\right)
$$

Balance to analyse II

Balance both terms using Stirling's approximation:
For each $h, T_{h}(n) \leq 1.3803^{(1-\alpha) n} \leq 1.3424^{n}$ where $\alpha \geq 0.0865$ satisfies

$$
1.3803^{1-\alpha}=\frac{1}{\alpha^{\alpha}(1-\alpha)^{1-\alpha}}
$$

Theorem:
Memorization of algorithm mis1 establishes an algorithm running in time $O^{*}\left(1.3424^{n}\right)$ needing exponential space.

X. Branch \& Recharge

Another Way to Design and Analyse Branching Algorithms

- Using weights within the algorithm; not "only" as a tool in analysis
- GOAL: Easy time analysis
- In the best case: a few simple recurrences to solve
- Sophisticated correctness proof
- Time analysis (still) "recurrence based"

Framework: Initialisation

Initialisation

- First assign a weight of one to each vertex: $w(v)=1$
- weight (resp. size) of input graph

$$
w(G)=\sum_{v \in V} w(v)=|V|=n
$$

Framework: Branching

Branching: just one rule

- Fix one branching rule: "select v " and "discard v "
- Fix a branching vector $(1,1+\epsilon), \epsilon>0$
- Make sure that for each branching
- "discard v ": gain at least 1
- "select v ": gain at least $1+\epsilon$
- running time of algorithm: $O^{*}\left(c_{\epsilon}{ }^{n}\right)$
- c_{ϵ} unique positive real root of

$$
x^{1+\epsilon}-x^{\epsilon}-1=0
$$

Framework: Recharging

Recharging

- When branching on a vertex v with $w(v)=1$, set $w(v)=0$ in both subproblems
- "select v ": Borrow a weight of ϵ from a neighbour of v
- When branching on a vertex v with $w(v)<1$ Recharge the weight of v to 1 , before branching on v

Generalized Domination problem

- also called (σ, ϱ)-Domination, where $\sigma, \varrho \subseteq \mathbb{N}$
- generalizes many domination-type problems
(σ, ϱ)-Dominating SET
Given a graph $G=(V, E), S \subseteq V$ is a (σ, ϱ)-dominating set iff
- for all $v \in S,|N(v) \cap S| \in \sigma$;
- for all $v \notin S,|N(v) \cap S| \in \varrho$.

An Example

Let $\sigma=\{0,1\}$ and $\varrho=\{2,4,8\}$.

An Example

Let $\sigma=\{0,1\}$ and $\varrho=\{2,4,8\}$.
Gray vertices form a (σ, ϱ)-Dominating Set.

σ and ϱ finite

Choice of ϵ

$$
\epsilon_{p, q}=\frac{1}{\max (p, q)}
$$

where $p=\max \sigma$ and $q=\max \rho$.

Example: Perfect Code

$\sigma=\{0\}$, and $\rho=\{1\}$.
$\epsilon=1$.

Recharging

Recharging

Recharging

Recharging

Recharging

Recharging

Recharging

We hope that Branch \& Recharge will prove its potential as another method to design and analyse branching algorithms.

XI. Exercices

Exercices I

1. The HAMILTONIAN CIRCUIT problem can be solved in time $O^{*}\left(2^{n}\right)$ via dynamic programming or inclusion-exclusion. Construct a $O^{*}\left(3^{m / 3}\right)$ branching algorithm deciding whether a graph has a hamiltonian circuit, where m is the number of edges.
2. Let $G=(V, E)$ be a bicolored graph, i.e. its vertices are either red or blue. Construct and analyze branching algorithms that for input G, k_{1}, k_{2} decide whether the bicolored graph G has an independent set I with k_{1} red and k_{2} blue vertices. What is the best running time you can establish?
3. Construct a branching algorithm for the 3-COLORING problem, i.e. for given graph G it decides whether G is 3 -colorable. The running time should be $O^{*}\left(3^{n / 3}\right)$ or even $O^{*}\left(c^{n}\right)$ for some $c<1.4$.

Exercices II

4. Construct a branching algorithm for the DOMINATING SET problem on graphs of maximum degree 3 .
5. Is the following statement true for all graphs G: "If w is a mirror of v and there is a maximum independent set of G not containing v, then there is a maximum independent set containing neither v nor w."
6. Modify the first IS algorithm such that it always branches on a maximum degree vertex. Provide a lower bound (for mis1a). What is the worst-case running time of this algorithm?

Exercices III

7. Modify the first IS algorithm such that it uses a reduction rules on vertex of minimum degree, if it is 0 or 1 , and if no such vertex exists it branches on a maximum degree vertex (of degree greater than three). Provide a lower bound (for mis1b). What is the worst-case running time of this algorithm?
8. Construct a $O^{*}\left(1.49^{n}\right)$ branching algorithm to solve $3-$ SAT.

More Exercices

Construct and analyse branching algorithms for the following problems:

- Perfect Cover: Given a graph, decide whether it has a vertex set I such that every vertex v of G belongs to precisely one neighbourhood set $N[u]$ for any $u \in I$.
- Max 2-SAT: Given a 2-CNF formula F, compute a truth assignment of its variables which maximizes the number of true clauses of F.
- Weighted Independent Set: Given a graph $G=(V, E)$ with positive integral vertex weights, compute a maximum weight independent set of G.

XII. For Further Reading

戋 T．H．Cormen，C．E．Leiserson，R．L．Rivest，C．Stein， Introduction to Algorithms， MIT Press， 2001.

圊 J．Kleinberg，E．Tardos， Algorithm Design， Addison－Wesley， 2005.
䍰 R．L．Graham，D．E．Knuth，O．Patashnik
Concrete Mathematics， Addison－Wesley， 1989.

R R．Beigel and D．Eppstein．
3－coloring in time $O\left(1.3289^{n}\right)$ ．
Journal of Algorithms 54：168－204， 2005.
圊 M．Davis，G．Logemann，and D．W．Loveland， A machine program for theorem－proving． Communications of the ACM 5：394－397， 1962.

固 M．Davis，H．Putnam．
A computing procedure for quantification theory． Journal of the ACM 7：201－215， 1960.

目 D．Eppstein．
The traveling salesman problem for cubic graphs．
Proceedings of WADS 2003，pp．307－318．
宣 F．V．Fomin，S．Gaspers，and A．V．Pyatkin．
Finding a minimum feedback vertex set in time $O\left(1.7548^{n}\right)$ ， Proceedings of IWPEC 2006，Springer，2006，LNCS 4169， pp．184－191．
图 F．V．Fomin，P．Golovach，D．Kratsch，J．Kratochvil and M． Liedloff．
Branch and Recharge：Exact algorithms for generalized domination．
Proceedings of WADS 2007，Springer，2007，LNCS 4619，pp． 508－519．

F．V．Fomin，F．Grandoni，D．Kratsch．
Some new techniques in design and analysis of exact （exponential）algorithms．
Bulletin of the EATCS 87：47－77， 2005.
围 F．V．Fomin，F．Grandoni，D．Kratsch．
Measure and Conquer：A Simple $O\left(2^{0.288 n}\right)$ Independent Set Algorithm．
Proceedings of SODA 2006，ACM and SIAM，2006，pp． 508－519．
睩 K．Iwama．
Worst－case upper bounds for k－SAT．
Bulletin of the EATCS 82：61－71， 2004.
國 K．Iwama and S．Tamaki．
Improved upper bounds for 3－SAT．
Proceedings of SODA 2004，ACM and SIAM，2004，p． 328.

O．Kullmann．
New methods for 3－SAT decision and worst case analysis．
Theoretical Computer Science 223：1－72， 1999.
囯 B．Monien，E．Speckenmeyer．
Solving satisfiability in less than 2^{n} steps．
Discrete Appl．Math．10：287－295， 1985.
目 I．Razgon．
Exact computation of maximum induced forest．
Proceedings of SWAT 2006，Springer，2006，LNCS 4059，
pp．160－171．
埥 J．M．Robson．
Algorithms for maximum independent sets．
Journal of Algorithms 7（3）：425－440， 1986.
R R．Tarjan and A．Trojanowski．
Finding a maximum independent set．
SIAM Journal on Computing，6（3）：537－546， 1977.
E. G. J. Woeginger.

Exact algorithms for NP-hard problems: A survey.
Combinatorial Optimization - Eureka, You Shrink, Springer, 2003, LNCS 2570, pp. 185-207.

圊 G. J. Woeginger.
Space and time complexity of exact algorithms: Some open problems.
Proceedings of IWPEC 2004, Springer, 2004, LNCS 3162, pp. 281-290.
嗇 G. J. Woeginger.
Open problems around exact algorithms.
Discrete Applied Mathematics, 156:397-405, 2008.

